Tuesday, December 24, 2019

Things Fall Apart By Chinua Achebe - 1104 Words

In Chinua Achebe’s Things Fall Apart, Christianity is introduced to a tribal clan through missionaries. The clan, however, has their own religion, which comprises of a clear social structure. While the mission is beneficial to many members of the clan, others are not content with the new influence. The Agbala—men with no title—are grateful for the new religion: the mission provides them with a new opportunity to become a respected member of society. The powerful men are wary of this change, as it decreases their power and status in the society, and allows for more social freedom and movement. As many in the tribe take to the new religion, the culture is slowly forgotten, causing conflict. When the missionaries enter Umuofia and attempt†¦show more content†¦A sudden hush had fallen on the women, who had been talking, and they had quickened their steps. Nwoye had heard that twins were put in earthenware pots and thrown away in the forest, but he had never yet come across them. A vague chill had descended on him and his head had seemed to swell, like a solitary walker at night who passes an evil spirit on the way.†(61) Nwoye realizes that he is powerless in Umuofia. He cannot save the twins, or himself. Nwoye is drawn to the mission, after being beat by Okonkwo. Feeling forced to live up to Okonkwo’s and the tribe’s expectations, Nwoye instead rebels, from his family and the violent practices of the Igbo culture as a whole. Nwoye feels a sense of relief from the missionaries’ song, as lessons the trauma of seeing the abandoned twins and knowing that Ikemefuna was killed. â€Å"The words of the hymn were like drops of frozen rain melting on the dry palate of the panting earth. Nwoye’s callow mind was greatly puzzled.†(132) Nwoye is relieved and enlightened when he hears the hymn. He understands the social structure in Umuofia is flawed, and decides to reestablish his life. The missionaries bring new hope to Nwoye, and to the outcasts of Umuofia. By extracting the outcasts from the society, the missionaries cause social upheaval and undermine the fabric of Umuofian society. In order for there to be a functioning society in Umuofia,

Monday, December 16, 2019

The Happy Prince Free Essays

In the beautifully written tale The Happy Prince, it tells a story of love and generosity. The book delves into a fairy tale of a swallow and a prince, it poetically talks of the time when the prince was alive and how he was such a joyful person. The people of the kingdom bestowed upon the prince the nickname ‘The Happy Prince. We will write a custom essay sample on The Happy Prince or any similar topic only for you Order Now ‘ When the prince died the town councillors chose to create a statue honouring him, setting the statue high above the town so the happy prince could watch over everyone. The Prince was coated in gold and rubies, this made him look magnificent and the whole town admired him. The prince became friends with a swallow and together they help the poor by giving them the gold and rubies off the statue. The book enters into a world of perplexity and reliance. The construction of the tale is written in an humorous way, but in doing that it also explores some serious issues involving poverty and loneliness. Playwright and poet Oscar Wilde started writing the children’s book ‘The Happy Prince’ in 1988, the remarkably written book is wildly popular even still 23 years later. Wilde’s collection of children’s story books consists of The Happy Prince, The Nightingale and the Rose, The Selfish Giant, The Devoted Friend and The Remarkable Rocket, all with different meanings, all just as funny and all just as heart wrenching. I think Wilde not only wrote these books for children but he made sure they are comedic and entertaining for adults too. The stories all have deeper meanings and talk about essential issues, this I think is makes the books even better. I remember my dad reading ‘The Happy Prince’ to me as a child, the story back then was completely different to what I remember now. The humorous way Wilde goes into relationship between the two main characters in the story really made me laugh, I liked the way he talked of how to swallow fell in love with the reed and how the other swallows thought it was ridiculous because â€Å"she has no money, and far to many relations. Eventually the swallow tired of the reed as she â€Å"had no conversation. † Wilde uses humorous writing conventions such as metaphorical description of the relationships in the story between the wind and the reed â€Å"she was always flirting with the wind. † I love the style of writing and how witty and crazy Wilde’s ideas are. I think Wilde’s children’s book will always be loved, the bizarre stories will continue to make people laugh and proceed to be fantastic bedtime stories. How to cite The Happy Prince, Papers

Sunday, December 8, 2019

Persepolis 2 The Story Of Return Essay Example For Students

Persepolis 2 : The Story Of Return Essay Persepolis 2: The Story of Return is anchored around how Marji is affected by the social injustice that occurred during the Islamic Revolution. Growing up as â€Å"a westerner in Iran and an Iranian in the West,† (Satrapi 274) changes and molds her into the young woman she is at the end of her journey. In this second chapter of Satrapis life she moves away from the comfort of Iran and finds a life in Vienna. Marji desires to find her purpose and identity during her brief time here and faces many battles with language barriers, people and herself. Marjis past from Iran haunts her and instills the idea that she needs to make something of herself while in Austria. Finding that Austria took her down a darker path where the light was scarcer and the guilt from abandoning her culture became overwhelming she returns to her hometown. Adjusting back into the social norms of Iran is hard for her because of the freedom she experiences in Austria. Marji finds her passion within art and makes friends as well as a lover at the University in Iran that challenges her morals and forces her to think about her future. Marjane Satrapi reflectively illustrates the journey of finding her identity throughout adolescence during the Iranian revolution and her perception of Iran within the West. Marji began to get fed up with the strict Iranian ways, causing her to travel to Vienna, Austria to avoid social pressure and violence. During the Islamic Revolution often times woman were unsafe walking around the streets. They were told to not speak of their views and their education was not a priority for the government. The anti-feministic environment challenged her in many ways by making her fight for her voice to be heard. Marji is a strong, sassy, opinionated y. .ons do not incorporate much detail so this allows readers to fill in the story with their imagination. The cartooning in Persepolis 2 is simplistic and to the point. There is little distraction on the page and her layout of the panels is neat and read left to right. When looking at her work it is made clear that it is the reader’s job to fill in the illustration. Why would Satrapi do this? She presents her illustrations like this because doing so allows the reader to believe the characters more and get encompassed by the story. Moving forward, looking closely at the veils in the panel above, one can see that it is so much more than just an accessory appearing on the page. The veil attracts the audience to her features and expression allowing one to access her internal traits. The power of illustration and what you allow to show or keep to yourself is magnificent.

Sunday, December 1, 2019

Karyotyping in Genetic Counseling Programme Essay Example

Karyotyping in Genetic Counseling Programme Paper Genetic counselling is a counselling process that deals with disorders within the family. This process involves a counsellor who helps the family or the person in the following ways: (a) discusses medical facts and informs about the diagnosis and the cause of the disorder and the cure; (b) informs the way heredity can cause disorders and the individuals in the family that possess risk; (c) helps to understand the cure but keeps in mind awareness of the comeback of the disease; (d) chooses the cure which they find appropriate, keeping in mind the risk and the family goals and acts accordingly to the decision; and (e) tries to make the best arrangements for the necessary adjustments within the family due to the disorder and/or to the risk of the reappearance of that disorder (Fraser, 1974). 1. Genetic Counselling Origin, Nature, and Goals Genetic counselling was established in 1947 and its main purpose was to explain the relationship between clinical geneticists and others who provide relevant information about etiology, history of nature, and occurrences of hereditary disorder risks. Its main aim was to promote a viable trend towards the various goals and values of those counselled and to dispel the association with eugenics that is relative to past practices of genetic counselling. The addition of nondirective approach in genetic counselling by the Rogerian psychology, has set it as standard in 1974. This standard remained consistent over time with the objective of early purveyors of genetic information with those scientists who were used to give information without providing advice (Mahowald, 1998). 2. Genetics Counselling Programme: Its Importance 2. 1 Reproductive decision-making: Some studies have defined effectiveness as having an impact on reproductive decision-making, leading to a potential reduction in affected births (Pilnick, 2001). Hildes at al. for example, reported a pilot neonatal screening programme for Duchenne muscular dystrophy (DMD), offering prenatal diagnosis for future pregnancies in women who are at risk. However, prenatal diagnosis was only actually carried out in two out of seven subsequent pregnancies. We will write a custom essay sample on Karyotyping in Genetic Counseling Programme specifically for you for only $16.38 $13.9/page Order now We will write a custom essay sample on Karyotyping in Genetic Counseling Programme specifically for you FOR ONLY $16.38 $13.9/page Hire Writer We will write a custom essay sample on Karyotyping in Genetic Counseling Programme specifically for you FOR ONLY $16.38 $13.9/page Hire Writer The authors conclude that such programmes â€Å"may not be an effective way of decreasing the number of repeat cases of DMD within families† (Hildes, 1993). Another study of clients who reported reactions to genetic counselling, found that almost half (43. 5%) of 628 clients completing questionnaires six months after their counselling session, reported that their reproductive plans had been influenced. However, the change and stability of reproductive plan patterns of both groups -self-described influenced and not influenced were similar. Such an approach is always likely to be contentious because of its thinly veiled eugenicism (Wertz, 1986). This has led to a search for other possible outcome measures. 2. 2 Information recall: Swerts for instance looked at the shadow induced by both genetics counselling and neural tube defects (NTD) and prenatal diagnosis for Down’s syndrome (DS), and also practised a simple information-delivery model, evaluating effectiveness by measuring recipients’ recall rather than their subsequent reproductive decisions (Swerts, 1992). Measurements of knowledge acquired or information recalled after counselling are frequent proxies for effectiveness, reflecting the common attempt to avoid the stigma of eugenics by presenting counselling as an educational intervention to enhance recipients’ autonomy. A number of studies have compared ‘before’ and ‘after’ knowledge of genetic factors amongst various client groups (Pilnick, 2001). 2. 3 Anxiety reduction: Anxiety has the potential to increase among genetic tested subjects. Mennie et al. found that, compared with controls who were identified as non-carriers, Cystic Fibrosis carriers and their partners showed a significant increase in generalized psychological disturbance over a four-day period, while awaiting the partners’ test results. This was attributed to anxiety and depression. After the results had been released, both parties returned to their control levels. Watson et al. also examined anxiety in those being screened to ascertain their CF carrier status. The authors report that counselling had mostly allayed this when couples were interviewed six months after the initial test. However, since the screening was simply to determine (asymptomatic) carrier status, which is not essentially problematic in reproductive terms, this seems likely to have had an impact on expressed anxiety. Other researchers noticed no anxiety among a general population cohort screened for CF carrier status (Livingstone, 1994). A study of the psychological outcome of amniotic fluid in three risk groups (older mothers, mothers who had a previous child with DS, and mothers who had a previous child with NTD) found anxiety levels in relation to the test both differed between the groups and showed considerable variation within each (Everskiebooms, 1988). Different screening or testing programmes clearly have different implications for the participants, and there are no easy comparisons to be made or conclusions drawn. Although most literature in this area relates to genetic testing, some studies do focus directly on counselling. One report examined the impact of different counselling formats on mood. A psychological scale administered before and after counselling assessed mood change. The authors concluded that the use of different formats made no significant differences to mood, although there is no discussion of what the changes actually were (Fisher, 1981). Cull et al. carried out a similar assessment of differing counselling formats using the Spielberger state-trait anxiety inventory, and also found no significant differences between groups. Another study examined both clients’ expectations of counselling and its psychological impact, again using the Spielberger inventory (Michie, 1997). There was reduced adverse psychological impact when patient expectations were met in the counselling session. All these studies, however, are concerned with comparisons of counselling methods rather than counselling itself. The only study identified which explicitly focused on anxiety levels as a result of counselling concerned familial breast cancer (Lloyd, 1996). Counselees had higher breast cancer specific distress rates after counselling than before, despite being more informed. The potential for counselling to be a worrying or threatening experience is underlined. As Jarmas has pointed out, counselling may also have adverse psychological impacts on counsellors, an issue that does not yet seem to have attracted investigators. Nevertheless, anxiety reduction among those tested may be one of the less contentious outcome measures. 2. 4 Client satisfaction: The importance has also been defined in terms of clients’ satisfaction. In one study, 36 individuals who had received counselling for cancer were asked to rate their satisfaction both with the care provided by the clinical geneticist they had seen, and with general procedures at the clinic (L. P. ; Leschot N. J. , 1997). In another, clients were asked to rate counselling sessions in terms of clarity, depth of discussion and their willingness to raise issues; the ratings were examined for evidence of influence from the sex of the counsellor (Zare, 1984). However, both studies acknowledged the limitations of their approach, stressing the importance of relating such findings to qualitative analysis of the actual counselling sessions. Reported satisfaction is a questionable measure of process, since it does not necessarily relate to what actually occurred during the session. As Clarke et al. highlight, while research has focused on outcome, effectiveness is also fundamentally related to process. In their view, while outcome measures are valid in a research context, they are useless in practice, a position echoed by other commentators who argue that outcome measures used alone are both inappropriate and methodologically inadequate (Kessler, 1992). 3. Structural and Numerical Abnormalities There are two types of aberrations that karyotyping could be identified in the foetus – these are numerical and structural. Numerical aberrations depict loss or gain of chromosomes which might be one or more. The title aneuploidy has been given to such kinds of aberrations. The term trisomy expresses the occurrence of a single extra chromosome and the term polyploidy shows the occurrence of two or more chromosomes (Mosby, 2005). Structural chromosome rearrangements are considered to be the other main sort of aberration; this is an outcome of partition and reunification in a different configuration of chromosome. These aberrations also contain translocations, which includes the exchange of genetic materials among chromosomes. One of the most famous aberrations identified during the prenatal period are aneuploidies such as trisomy 21 (Down’s syndrome), trisomy 18 (Edward syndrome), trisomy 13 (Patau syndrome), and X and Y sex chromosome aneuploidies (Divane, 1994). 95% of live-born chromosomal aberrations occur as a result of them (Whiteman, 1991). Chronologically occurrences of various chromosome aberrations are very difficult in composition because certain aberrations have such negative side effect that the survival chances of the foetus are significantly reduced. Statistics and facts that are gathered on the occurrence of different aberrations on certain occasions must have to be present in relation to the number of births (which are before or after birth), occasionally in comparison to the numbers of amniotic samples examined, or at other times in terms of pregnancies. . Table1. Chromosome abnormalities commonly detected their frequency and consequences (Grimshaw, 2003). Chromosome number, shape, and size form the karyotype. In spite of the fact that every karyotype is varied for each organism, every cell in every organism has the same karyotype. Chromosomal abnormalities can be separated into two categories: numeric and structural (Figure 1) (Todd, 2000). Changes in chromosome numbers result in the addition (trisomy or triploidy) or loss (monosomy or aneuploidy) of a chromosome. Between and within chromosomes structural changes could appear. Regions between chromosomes can be traded (translocation) or donated from one to the other (insertion). In the same chromosome, regions can be lost (deletion), duplicated (amplification), or reversed (inversion). It is a challenge for medical professionals to correctly identify these structural alterations and following that counsel the patients (Todd, 2000). Figure:1 Diagrammatic representation of chromosomes and their structural alteration: A) Chromosomes 3 and 8 stained with giemsa (G-banding) at a resolution of the 400 band level. Each chromosome has a short (p) and long (q) arm that is separated by a centromere at one end and a telomere at the other. Chromosomes are described as metacentric (chromosome 3) or acrocentric (chromosome 8), depending on the position of the centromere. Bands and sub-bands are numbered from the centromere outward. B) Structural aberrations involving 2 chromosomes. Illustrated is a fragment from chromosomes 3 (yellow) and 8 (blue) undergoing translocation [t (3;8)(p21-pter;p21-pter)] and insertion [ins (3;8)(q21. 2-21. 3;q13. 3-22)]. C) Structural alterations involving a single chromosome illustrated (using chromosome 3) include amplification [dup(3)(p21-pter)], inversion [inv(3)(p21-pter)], and deletion [del(3)(p21-pter)] (Todd, 2000). Figure 2: The human karyotype and aberrations. A) The normal human karyotype consists of 46 chromosomes (23 pairs). Autosomes are chromosome pairs 1-22. The sex chromosomes consist of a pairing of the X and Y chromosomes (XX _ female; XY _ male). B) Each chromosome is composed of two chromatids. At the end of each chromatid is the telomere. The centromere (â€Å"clear zone†) is found in a centric or paracentric position. C) Numeric aberrations of the human karyotype appear in many diseases and syndromes. Most commonly, the change is an addition (trisomy) of loss (aneuploidy) of a chromosome. Down’s syndrome is an important example. D) Structural alterations are another important chromosomal aberration. Many types of structural alterations exist in human disease and syndromes. The Philadelphia chromosome, found in chronic myelogenous leukemia, is an important example and a major prognostic factor (Todd, 2000). 4. Methods Used in Genetic Counselling Programme 4. 1 Amniocentesis: Amniocentesis is one of several diagnostic tests that are carried out for mothers undergoing Genetic counselling. It detects the chromosome disorders that can occur in the unborn child. In this process, a sample of the fluid from the amnion is removed and then tested for disorders like Down’s syndrome, anaemia etc. This test is carried out during the 15th week of pregnancy. Amniotic fluid is used for different tests in the laboratory like karyotyping etc. However, amniocentesis increases the risk of miscarriage and therefore, this test is recommended only for women who have a high risk of chromosome abnormality. 4. 2 Conventional cytogenetics: For prenatal diagnosis the methods that are mainly used in genetic counselling are classified into two categories: Conventional Genetics and Molecular Cytogenetics (Bui, 2002). 4. 2. 1 Karyotyping In 1969 there was an expansion of karyotyping techniques for banding chromosomes, which allowed the detection of more subtle structural chromosome abnormalities. A karyotype is the exact organization (matching and alignment) of the chromosome complement of a cell. In a karyotype, chromosomes are arranged and numbered by size, from the largest to the smallest. Karyotype is the normal classification, which illustrates the normal or abnormal, constitutional or acquired chromosomal complement of an individual, tissue or cell line. To determine the numerical chromosomal abnormalities or structural rearrangements –mainly translocations- the conventional cytogenetic techniques should be used (Catalina, 2007). When full karyotype analysis is performed all the samples should be cultured enough so dividing cells are present. Then the cells are harvested, and the metaphase chromosomes are spread onto a microscope slide. The chromosomes are banded by enzyme digestion and then are analyzed by a cytogenetic expert. Advantages: Until now the gold standard for genetic tests is the conventional cytogenetic study, since it is the best one currently available for assessing the whole karyotype at one time. Moreover, it is inexpensive and detects abnormalities bigger than 3Mb in size (Catalina, 2007). Disadvantages: Only dividing cells can be assessed, there is a need for metaphase stage cells. No frozen tissue can be used. Moreover, it is a time-consuming method and due to the lack of automation in sample processing, the time needed to analyze and generate the final report is almost two weeks. Due to the difficulties of analyzing and interpreting the data, an experienced cytogenetic specialist is required (Catalina, 2007). 4. 2. 2 Molecular Cytogenetics Even though, Karyotyping remains the gold standard of chromosome analysis and still is the most frequently used genetic method in prenatal diagnosis, development of fluorescence in situ hybridization (FISH) technologies (Bui, 2002) is the most significant step in cytogenetics during the past 20 years. Moreover, over the past 30 years modifications in cytogenetic techniques have provided an opportunity to increase sensitive detection of chromosome abnormalities. The invention of FISH techniques has provided the most prominent advances in the fields of research and diagnosis. A complete dissection of complex chromosome rearrangements can be achieved by the new multicolour karyotyping techniques and also provides the prospect of identifying new recurring chromosome rearrangements. Comparatively interphase fluorescence in situ hybridization and genomic hybridization both hindered the use of metaphase chromosomes altogether and have allowed the genetic analysis of previously problematic and unidentifiable targets. New advances in comparative genomic hybridization to DNA microarrays help in achieving high resolution and automated screening for chromosomal imbalances. Rather than replacing conventional cytogenetics, these new techniques have extended the range of cytogenetic analyses when they are applied in a complementary fashion (Kearney, 2001). 4. 2. 2. 1 FISH Background: The most common practice that has been carried out in molecular cytogenetics is known as FISH. In 1988 it was first introduced in USA based clinical cytogenetics, and speedy progress has subsequently been witnessed in this field. In 1991 the first test was made in the UK. This method acquires chromosome-based probes accompanied by fluorescent labels which are attached to them; now these probes can be found in commercial kit form. Microscope systems are required for detection, which are available as basic fluorescence microscopes to advanced image analysis systems known as microscope and camera devices of cooled charged-coupled type. This test involves more effort and resources than presently practising FISH, which is a harder labour test than the existing karyotyping technique (Grimshaw, 2003). Prenatal diagnosis and FISH Test: Fluorescent In-Situ Hybridization studies have been conducted earlier on uncultured amniocytes with the acquisition of single chromosome-specific probes (for example for chromosome 21). However, these probes (centromeric repetitive or alphoid) showed vivid evidence of cross-hybridization between certain chromosomes (e. g. the two probes interacted for chromosomes 13 and 21). This finding paved the roads to the development of different types of probes (cosmid contig and YAC probes). It was successfully demonstrated that the usage of the cosmid prodes to identify Down’s syndrome (trisomy 21) in 1994, in a study of 500 uncultured amniotic fluid samples. After a couple of years, the UK introduced the use of YAC probes so to ensure speedy first reports on samples (Lowther, 1996). Although, evidence emerged which predicted that a mixture of five FISH probes could be utilised as a combined multicolour FISH hybridization experiment, when testing the five chromosomes most commonly linked with chromosomal abnormalities (21, 18, 13, X, Y). Further into that these 5-probe FISH test kits were manufactured and made available commercially (Grimshaw, 2003). Figure 3. Diagram of FISH procedures (Carpenter, 2001). A number of techniques, such as multicolour FISH (MFISH) and SKY FISH, have been developed from the FISH-based karyotyping of chromosomes. Fluorescent dyes used spectral karyotyping methods that jot together particular chromosomes regions. By utilizing a chain of specific probes each with changing quantity of dyes, unique spectral characteristics were found in different pairs of chromosomes (Catalina, 2007). There is a wide range of FISH techniques for both diagnostic and research applications. Since commercial availability of probes is increasing most clinical laboratories now use FISH as an addition to cytogenetic diagnosis. Metaphase FISH with specific gene probes provides an accurate assessment of rearrangements with a defined diagnostic or prognostic value, and interphase FISH provides the possibility of analysis on samples that would otherwise fail. One of the most significant advances has been in the development of multicolour FISH technologies which has culminated in FISH-based karyotyping methods. Metaphase CGH provides a global screening approach allowing the analysis of samples previously intractable to cytogenetic analysis. More recently, the development of CGH to DNA previously intractable to cytogenetic analysis. More recently, the development of CGH to DNA (Kearney, 2001). Advantages: FISH is a very rapid method, the results are ready within 24-48 hours. Also it is a sensitive and cost-effective and identifies both numerical and structural chromosomal abnormalities in interphase and metaphase nuclei, and permits rapid sex determination (Catalina, 2007). Limitations: However, FISH has some limitations such as cross-hybridization of non-specific fluorescence signals, non-specific background, and suboptimal signal strength. Though, small deletions, duplications and inversions cannot be identified by painting prodes (Catalina, 2007). 4. 2. 2. 2 Multicolour Whole-chromosome Painting (M-FISH AND SKY) The most prominent characteristic of FISH is its ability to simultaneously identify several targets by using variant colours (multicolour FISH). As early as 1989, as many as three targets could be visualized at the same time (Nederlof, 1989). By the early 1990s 7 ±12 different probes in different colours could be simultaneous detected (Dauwerse, 1992), (Ried, 1992). However, it was not until 1996 that developments in probe labelling and digital imaging systems allowed the visualization of the entire chromosome complement in 24 different colours (Schrock, 1996), (Speicher, 1996). The two techniques, M-FISH and SKY, both utilize DOP-PCR amplification of flow-sorted chromosomes and a ‘combinatorial’ labelling approach. The principle behind this for both M-FISH and SKY is the generation of more colours than there are fluorochromes available, by labelling with 1:1 mixtures of fluorochromes. The theoretical number of targets which can be discriminated in this way is 2n=1, where n represents the number of fluorochromes available. Using only five fluorochromes, this allows painting of the whole chromosome in twenty-four coloured complement (see Figure 5). Figure 5. M-FISH colour karyotype of a bone marrow metaphase from an AML patient. G-banding identified a balanced t(1;3)(p32;p13), and this was confirmed by M-FISH (arrows). However, M-FISH also identified a cryptic der(6)t(6;22) not visible by G-banding (arrow). Two copies of the der(6) are present in this cell (Kearney, 2001). The imaging system which is used to discriminate fluorochrome combinations is the only difference between SKY and M-FISH. M-FISH is acquiring different fluorochrome pictures for each of the five fluorochromes using specifically selected narrow band pass filter sets (Eils, 1998),(Speicher, 1996). SKY on the other hand uses a single exposure of the image and a grouping of cooled charge coupled device (CCD) imaging and Fourier transform spectrometry to analyze spectrum of the fluorochrome combinations (Schrock, 1996). Both of these methods use dedicated software to transfer the unique labelling combination for each chromosome into a pseudocolour. It is important to mention that both of them have already demonstrated hidden chromosome rearrangements in complex karyotypes such as in tumour cell lines and in haematological malignancies (Speicher, 1996), (Veldman, 1997). Disadvantages: As with other whole-chromosome painting methods, both M-FISH and SKY are not capable to detect small intrachromosomal rearrangements (inversions, deletions, duplications). Both techniques can not detect mosaic cells. In particular, the limit of resolution for telomeric rearrangements is 2 ±2. 5 Mb (Brown,2000), (Uhrig,1999). Additionally, to overcome these limitations complementary FISH approaches are required. In addition to this, latest reports state that although M-FISH and SKY have proved to be extremely useful in prenatal, postnatal, and cancer cytogenetics, these technologies have innate limitations that, in certain cases, could result in chromosomal misclassification. Most multicolour karyotyping errors have a similar mechanistic origin. Structural rearrangements, which compare non-homologous chromosome material, often come up in overlapping fluorescence at the interface of the translocated segments; called occasionally as â€Å"flaring† (Lu, 2000). This effect can obscure or alter the fluorescence pattern of adjacent chromatin, which could lead to misinterpretation (Lee, 2001). 4. 2. 2. 3 Comparative genomic hybridization (CGH) CGH is a technique that presents an overview of the whole genome and allows the detection of DNA copy number changes. It is a powerful option instead of chromosome banding and FISH. This method can detect a genome screening of chromosomal differencies without previous information about genomic regions which could be a potential target. CGH is a substitute method which reveals unbalanced chromosomal changes that may happen in hESCs lines during lengthy-span cultures, especially in cases where it seems difficult to obtain high quality metaphases (Catalina, 2007). Advantages and Limitations of CGH: The obvious edge of the CGH technique is that it requires only the genomic DNA; moreover, CGH does not require prior knowledge of the genomic region of interest. CGH can also identify copy number changes, increases and losses of regions of chromosome. Though, CGH is able to identify a number of quantitative genetic alterations including duplication or deletion of single chromosome bands. The CGH analysis also indicates the presence of genetic abnormalities that are not detected by other cytogenetic or molecular approaches. The turgidity of this technique in detecting low copy number gains or losses is in between 10-20Mb, therefore the detection limit of amplification is 2Mb. However, CGH has several limitations such as inability to detect chromosomal balanced translocation, inversions, and intragenic rearrangements (Catalina, 2007). Figure 7: Comparison of cytogenetic techniques for identifying chromosomal abnormalities (Speicher, 2005) Although the advances of the techniques utilized in genetic counselling are major, all of them come with their own share of advantages and disadvantages. The same is summarized in Table 2. Quantitative fluorescent polymerase chain reaction (QF-PCR) QF-PCR combines the benefits of relative and competitive RT-PCR. It is accurate, specific, high throughput and relatively easy to execute. Real time PCR automates the lengthy relative RT-PCR process by quantitating reaction products for each sample in every cycle. RT-PCR systems detect and quantify the fluorescent reporter. The signal of this reporter increases in direct proportion to the amount of PCR product in the reaction. The reporter is a double-strand DNA which is bound to a specific dye (SYBR Green) and upon excitation emits light. If the dye is included in PCR reaction as PCR product accumulates the fluorescence increase. An alternative technique for quantifying PCR products is TaqMan, which depends on fluorescent resonance energy transfer (FRET) of hybridization probes for quantitation. The probe hybridizes to an internal region of a PCR product. After irradiation the excited reporter dye transfers energy to the nearby quenching dye, which results in a non-fluorescent substrate. The advantages of this method are that it is inexpensive, simple to use, and sensitive The future of prenatal diagnosis: Full karyotype or molecular cytogenetics tests? The introduction of rapid molecular testing of all prenatal samples has brought up the question of the need for full karyotype analysis of all samples. When ultrasonography shows chromosomal abnormality, and there is no aneuploidy can be identified by frequent testing, full karyotyping is definitely required. However, when women have been identified by serum screening and/or maternal age as being at increased risk of Down’s syndrome they undergo persistent testing. â€Å"Double testing† of these women in a public-funded health service could be considered as unjustifiable and there are also down points for the parents. The time between the results of the rapid test and the full karyotyping could cause needless anxiety. Additionally most parents do not realize the significance of the full karyotyping; because they only worry about Down’s syndrome and not for the possibility of other abnormalities. Full karyotype analysis could identify abnormalities of unidentified importance, likewise the presence of very small â€Å"marker† chromosomes, clearly balanced chromosome rearrangements, or regions of variability, which could be hereditary. These outcomes could frequently create counselling difficulties, and cause problems for the parents in how to deduce and choose between anxiety and pregnancy termination during an ongoing pregnancy. When a chromosome rearrangement is found in one of the parents, full karyotyping is needed to test for abnormalities arising as a result of the rearrangement. However, recent advances in the policy of pre-implantation genetic diagnosis for rearrangement carriers (Scrivn, 1998) have permited rapid prenatal testing for chromosome imbalance using sub telomere probes (Pettenati, 2002). The UK National Screening Committee (UKNSC) suggested in 2004 that there is no need for karyotyping when screening for Down’s syndrome and instead prenatal diagnosis with FISH (fluorescence in-situ hybridisation) or PCR as rapid diagnostic tests as should be offered. Furthermore, UKNSC also suggested that the two previous tests should only be included for trisomies 13, 18, and 21. Before introducing the radical step of rapid testing alone for pregnancies at risk of Down’s syndrome, it is important to set up the significance and predicted effect of such a change in policy. Full karyotype results of prenatal samples from these referral categories can be audited to determine how many clinically significant chromosome abnormalities are likely to be undetected if rapid testing alone had been carried out. Recent studies which are investigativing karyotype abnormalities in prenatal samples referred for raised maternal age (RMA) or increased Down’s syndrome risk identified by serum screening will be reviewed in the following paragraph: In 1,130 prenatal samples, which were all referred for RMA or elevated risk of Down’s syndrome, an important clinical abnormality in chromosome 8 was identified (deletion of the short arm), which would not be identified by rapid testing (Thein et al). This is responsible for 0. 08% of the sample group. Thilaganathan et al. reported 3,203 amniotic fluid samples, were referred for a number of reasons. Rapid testing here did not detect all clinically significant abnormalities, which were detected with ultrasound. On another study, Ryall et al.reported 2,737 prenatal samples from pregnancies referred as serum screen +ve and an abnormality in chromosome 2 and 6 were detected. In the largest cohort study with 20,923 referrals around 30 important abnormalities were identified which includes four small marker chromosomes (Lewin et al. ). Among them, three pregnancies had trisomy 8, three trisomy 9, and three trisomy 16; and were all non-mosaic and therefore non-viable. Additionally thirteen cases of structurally abnormal chromosomes were identified, and complex abnormalities were found in four pregnancies. Rapid testing would detected as far as 99. 2% of clinical significant abnormalities, when pregnencies are reffered to RMA or serum +ve. In these studies, 196 balanced rearrangements or other good prognosis anomalies were found, which would have required parental karyotyping. This would lead to anxiety and in some cases termination of pregnancy. 5. Summary The future seems very exciting since the new developments in genetic information will present great challenges for genetic counselling. Medical doctors are currently facing problems in understanding and retaining genetic information outside their own scientific area. In some cases it is still not clear when test should be offered, since if a family is affected legal action could be used to question why an available test was not offered. Eventually, more diagnostic techniques would help to identify and treat more effectively, but not without false positives. Though, queries about which disorders to diagnose and when, (e. g. premarital, pre-conceptional, foetal, childhood, adulthood) will continue. It is important to mention that molecular cytogenetic increase the progress of prenatal diagnosis used in genetic counselling programmes to reveal chromosomal abnormality. The molecular cytogenetic techniques provide speed, accurate, ease and reliable diagnosis although there are some limitations associated with these techniques. However, if combination of the conventional techniques and molecular ones wil